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SUMMARY

We present a workflow for representing seismic sections
as flowlines. The flowlines are extracted as individual
objects with a set of properties which makes them easy to
work with for various purposes. Here, we focus on (1)
extraction of unconformities, (2) identification of seismic
sequences and (3) tracking of coherent events. With the
proposed workflow, we extract geometric data from the
seismic differential dip field. We treat the differential field
aligned with seismic reflections as analogous to a fluid
velocity field, enabling the tracking of individual
flowlines. These flowlines represent the trajectory of
imaginary particles carried by the flow, following the
fluid's velocity vector at each point. With a scoring system
that quantifies overlapping paths, we can identify major
unconformity surfaces. Additionally, the flowline
representation inherently captures the lateral regional
context of a sample, following the seismic geometry. This
allows us to group the flowlines into assumed geological
packages using available machine learning techniques
such as clustering algorithms.

INTRODUCTION

Seismic reflection data offers detailed subsurface images
of the Earth, enabling geologists to delineate geological
structures and interpret geological processes, including
sedimentation history and tectonic activities. The process
of mapping these structures from seismic images demands
a substantial investment of time and expertise in seismic
interpretation and geophysical comprehension. Each
seismic image typically reveals distinct stratigraphic
sequences characterized by variations in reflection
properties such as continuity, amplitude, and frequency
spacing (Badley 1985).

These seismic sequences represent stratigraphic units
comprising conformable seismic reflections, indicating
intervals of consistent sedimentation conditions
influenced by factors like sediment supply and relative sea
level. The boundaries of these sequences, defined as
unconformities or correlative conformities, mark changes
in sediment deposition or non-deposition (Mitchum, Vail,
and Sangree 1977). Furthermore, seismic sequences can
be categorized into depositional strata packages, such as
lowstand, highstand, and transgressive system tracts,
providing valuable insights into sedimentary basin
evolution (Vail and Mitchum 1977). Understanding these
stratigraphic units and their boundaries is fundamental for
unravelling the complex evolution of sedimentary basins.

Autotracking tools for seismic interpretation have been
readily accessible since the mid-1990s through standard

industry software packages (Eckersley, Lowell, and
Szafian 2018; Henderson, Purves, and Leppard 2007,
Marroquin 2014; Pauget, Lacaze, and Valding 2009;
Vevle et al. 2018; Williams 2018). However, despite the
availability of autotracking tools, seismic interpretation
remains reliant on the manual effort of experienced
interpreters. Within the realm of computational and
computer-assisted horizon extraction methods, several
noteworthy approaches have emerged. These include
horizon extraction techniques utilizing unwrapped
instantaneous phase volumes (Stark 2003, 2005; Wu and
Zhong 2012) and methods based on local reflection slopes
(Bakker 2002; Lomask et al. 2006; Wu and Fomel 2018;
Wu and Hale 2013). Most existing data-driven methods
for horizon extraction successfully track coherent
horizons, but they have difficulties to correlate dislocated
horizons across faults and along unconformities within
structurally and stratigraphically complex seismic
volumes. Addressing unconformities resulting from
significant erosion poses challenges, especially as they
often truncate seismic horizons. Unconformities stand as
pivotal features in understanding the evolution of
sedimentary basins. Typically, they denote changes in
depositional environments due to erosional events or
hiatuses. The interpretation of them can be laborious,
especially using traditional seismic interpretation
methods. Over recent decades, numerous methodologies
leveraging computer science, including image processing
and machine learning, have been proposed to automate
this process (Bahorich and Farmer 1995; Barnes 2000; van
Hoek, Gesbert, and Pickens 2010; Wu and Hale 2016).

In this work we present an effective method for
representing seismic data as flowlines. The method
involves transforming seismic data to the flowline domain
by tracking the trajectory of imaginary particles within the
differential dip field of the seismic image. This enables us
to quickly identify and parameterize the major
unconformity surfaces in the seismic image as regions of
convergent flowline paths. Our approach is in line with
similar methodologies previously introduced, where
seismic horizons are delineated by tracking the local dip
of seismic events, as demonstrated by Bruin et al. (2006)
and van Hoek, Gesbert, and Pickens (2010). However, we
distinctly focus on the direct analysis and interpretation of
seismic data within the flowline domain itself, rather than
primarily deriving secondary attributes, to extract
information about the sequence boundaries and the
seismic sequences. Furthermore, the flowlines serve as an
easy-to-use format for further work, such as with machine
learning, for a variety of objectives, including those
presented in the work (1) extraction of unconformities, (2)
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identification of seismic sequences and (3) presenting a
preliminary workflow for tracking coherent events.

FLOWLINE METHODOLOGY.

Our method focuses on extracting geometric data from the
seismic dip field. To characterize the dip field, we adopt a
similar approach to van Hoek, Gesbert, and Pickens
(2010) where we estimate the dip field based on the
structure tensor. This tensor is defined by its eigenvalues
A1 > A, > 0 and the corresponding eigenvectors {eq, €;}.
The largest eigenvalue, A;, and its eigenvector, e;, are
aligned perpendicularly to seismic reflections, indicating
maximum gradient alignment. The smallest eigenvalue,
A,, with its orthogonal eigenvector e,, aligns parallel to
seismic reflections, which is central to our analysis.

In our study, we treat the differential field aligned with
seismic reflections e, as analogous to a fluid velocity
field. This enables us to track individual flowlines, which
are the lines tangent to the velocity vector of the flow at
every point. This means that a small imaginary particle
moving along the flowline would be carried with the flow,
following the direction of the fluid's velocity vector at
each point in its path.

Figure 1 illustrates the main
steps of the flowline extraction
workflow. Figure la show the
input, a seismic section from the
F3 Netherlands block, Figure
1b shows the orientation of the
minimum eigenvector e, in the
seismic section and Figure Ic
illustrates the sampling process
of the starting position of the
flowlines. Figure 1d shows the
integrated flowlines for the
seismic section sampled on both
peak and trough.

RESULTS

We aim to extract information
about the sequence boundaries

We use the Runge-Kutta 4th order (RK4) method, a well-
suited numerical solution for ordinary differential
equations to integrate the flowlines. The enhanced
accuracy of RK4, being a higher-order method, ensures
that flowlines are calculated with significantly reduced
truncation errors. This allows for a more accurate
depiction of the flowlines even when larger step sizes are
used, compared to lower-order methods (Butcher 2016).
The process for creating the flowlines can be outlined as
follows:

1) Calculate the structure tensor field from the
gradient vector field of the seismic image.

2) Define our seismic flow field as the eigenvector
e, corresponding to the smallest eigenvalue
A, at each location.

3) Initialize the starting coordinate for the
flowlines by extracting traces with a fixed
increment along the seismic section and picking
the time-coordinate on a specific event type on
the trace.

4) Integrate the flowlines using the RK4 method.

5) Store the parametrized path of each flowline for
further analysis.

and the seismic facies from the
flowlines. The flowlines serve
as an easy-to-use format that
can be further utilized in
subsequent tasks such as
machine learning for various

purposes, including  those
presented in this work (1)
extraction of unconformities,
(2) clustering seismic facies and

(3) tracking coherent events.

Figure 1: The flowline extraction workflow. (a) Seismic section from the F3 Netherlands

block. (b) The orientation of the minimum eigenvectors on the seismic section. (c) The
sampling of starting positions for each flowline, picked on events with fixed trace offset
increment. (d) The resulting flowlines for the section in (a), picked on both peaks and
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Flowline unconformity detection.

Each position we initialize a flowline from simulates the

path of an imaginary particle placed in our flow velocity
field as seen in Figure 1d, where the number of
overlapping paths is visualized by the higher opacity in
the plot. These surfaces are associated with major
unconformities in the system and can partly be explained
by their nature of truncating other surfaces, i.e., they share
a common path with many surfaces. However, since the
major unconformities share a path with all the surfaces
that it truncates, both the unconformity surface and the
truncated surfaces will obtain a high overlap score.
Making it hard to extract the major unconformities on the
overlap score alone. In order to extract the major
unconformity surfaces, we propose a workflow to remove
the truncated surfaces associated with the major
unconformities use the following workflow:

Clustering flowlines
to identify seismic
sequence

The representation of
seismic data through
flowlines offers a
substantial benefit by
more effectively
capturing the lateral
context of  each
sample point on a
regional scale, based
on the  seismic
geometry. This
facilitates the task of
grouping  flowlines
into geological
packages using
straightforward

25 Highest-Scoring Surfaces

1) Calculate the overlap score and sort the surfaces
in descending order with respect to overlap
score.

2) We create a list S to hold our selected surfaces.

3) We add a surface s; to S if the overlap between
s; and any path in S does not exceed an overlap
threshold Oyp.

4) Continue until all valid surfaces have been
added.

The result of the method can be seen in figure Figure 2,
where we have plotted the 7 highest scoring surfaces in
Figure 2a, which seems to coincide well with some of the
major sequence boundaries in the system. The surfaces
are numbered based on their overlap score (importance)
from highest overlap score (1) to lowest (7). Figure 2b
shows 25 highest scoring surfaces superimposed on the
seismic section.

— ~

clustering techniques.  Figure 2: (a) The top 7 highest scoring surfaces with respect to overlap, ordered from highest (1) to
We  segment the Jowest (7). (b) The 25 highest scoring surfaces.

flowlines into eight

distinct clusters, using the distribution of the spatial
coordinates of the flowline paths using k-means
clustering. Figure 3 shows the delineated seismic
section, accurately tracing the major unconformity
surfaces evident in the seismic data.

Tracking coherent events

A further application of the flowline format involves the
tracking of coherent events. However, since flowlines are
determined based on local dip information, they do not
necessarily align with specific event types like peaks or
troughs. To address this, we can divide each flowline into
smaller segments, with each segment representing only

sequences, obtained by extracting the cluster boundaries
from the grouped flowlines. The segmentation aligns well
with the presumed stratigraphic sequences within the

one type of event. This segmentation enables the selective
analysis of flowlines corresponding to either peaks or
troughs. Figure 4 illustrates this concept, showing the
tracking of coherent peaks. The peaks are then
categorized according to the seismic sequences identified
in Figure 3.
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Figure 3: The eight sequences obtained from grouping the flowlines on the x and y coordinates of the flowline
paths using k-means clustering.

Figure 4: The tracked coherent events, focusing on peak detection. The events are categorized in alignment with our

identified seismic sequences.

CONCLUSIONS

We have developed a workflow that transforms seismic
reflection images into a flowline representation, derived
from the differential dip field. This method includes a
scoring system to evaluate the overlap of flowline paths,
allowing for the effective identification and extraction of
major unconformity surfaces. Additionally, we show that
combining flowlines with seismic amplitude information
allows us to track coherent event. Finally, our approach
highlights the effectiveness of using the flowline
representation of the seismic amplitude image for
machine learning applications, such as clustering. This
can be attributed to the regional context of each point in

the flowline domain. Our findings suggest that this
method has the potential to enhance the efficiency of
seismic data analysis, offering a useful tool for advancing
geoscientific research and exploration. Furthermore, the
flowline format's compatibility with machine learning
opens avenues for further exploration and development of
more sophisticated workflows.
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